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bstract
A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell
s presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution,
nd solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.
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. Introduction

Three-phase boundary (TPB) is a geometrical parameter that
s of crucial importance for the performance of solid-oxide fuel
ells (SOFC) [1]. In general a high TPB is required for high
lectrochemical performance. Even though there are number of
ublications concerning the modeling of SOFCs, most of these
odels lump the TPB length in the exchange current density

arameter, which makes the modeling task much easier [2–5].
evertheless, it is important to understand the influence of elec-

rode micro-structure on the TPB length. Deng et al. [6] reported
mathematical model to calculate the TPB length for mono-

ized particles. Their expression leads to a TPB length with units
f m/m4. It is quite difficult to conceptualize a physical quantity
ith the above mentioned units. Furthermore, their model do
ot account for the coordination number between the ionic and
lectronic conductors. In most cases of a composite electrode,
ne is interested in the volume-specific TPB length.

In an interesting article Wilson et al. [7] reported the three-

imensional reconstruction of a SOFC anode using ion-beam
canning electron microscopy to determine the micro-structural
roperties. They estimated the volume-specific TPB length for
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trode microstructure

heir sample to be 4.28 × 1012 m/m3. Brown et al. [8] reported
hat Ni constituted the fraction of larger particles with the par-
icle sizes raging 0.5–3.0 �m, while YSZ phase particle size
istribution were 0.5–1.0 �m. So it is also important to consider
he volume specific TPB length for cases with two different

ono-sized particle distributions. Schnieder et al. [9] reported
he discrete modeling of composite electrode and developed an
nalytical model for calculating the TPB length. They reported
hat the maximum TPB length is obtained when the volume
raction of ionic conducting particles is 50%. They also devel-
ped an analytical model for calculating the TPB length, which,
owever, predicts non-zero coordination number, even when
he ionic phase volume fraction is zero. Similar to the anode,
he three-phase boundary length in cathode is important for the
lectrochemical reduction of oxygen. Chan et al. [10] reported
n analytical expression for the calculation of TPB length. In
his work we present the development of a mathematical model
o describe the volume-specific TPB length per unit electrode
olume from a geometrical perspective.

. Model development
The model presented here is developed by considering a geo-
etric volume of a composite electrode characterized by its

orosity φ and particle radii r1 and r2. It is assumed that the ionic
nd electronic solid phases are made up of spherical particles.

mailto:deutschmann@ict.uni-karlsruhe.de
dx.doi.org/10.1016/j.jpowsour.2007.11.083
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Nomenclature

a radius of lens (m)
d distance between the sphere centers (m)
Ltpb average TPB length (m)
M ratio of the number of ionic and electronic parti-

cles
Np total number of particles
Np1 number of particles with radii r1
Np2 number of particles with radii r2
r radius (m)
vLtpb volume specific TPB length (m/m3)
Vl volume loss (m3)
Vt total volume (m3)
Vtl total volume loss (m3)
Z average coordination number
Ze coordination number of electronic conductor
Zi coordination number of ionic conductor
Zi−e coordination number between ionic and elec-

tronic conductor

Greek letters
α mean radius ratio
φ gas-phase porosity
φe volume fraction of electronic phase
φi volume fraction of ionic phase
ψ fractional overlap
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similar to that discussed in Fig. 2(a). There may also be cases
where

Vtl = (Np − 1)(1 − ψ)Vl, (5)
e electronic
i ionic

e start the model development by considering the intersection
f two spherical particles as shown in Fig. 1. The volume of the
hree-dimensional lens common to both the spheres as a result
f intersection is given by
l=π(r1 + r2 − d)2(d2 + 2dr2 − 3r2
2 + 2dr1 + 6r2r1 − 3r2

1)

12d
.

(1)

Fig. 1. Intersection of two spherical particles.
F
t
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ere r1 is the radius of the larger sphere, r2 that of the smaller
ne, and d is the distance between the centers of two spheres. (In
he analysis presented here we assume the electronic conductors
re larger than the ionic conductors [8].) Further, the intersection
f the spheres is a curve lying in the plane parallel to the x–y
lane, whose radius a is given by

= 1

2d

√
4d2r2

1 − (d2 − r2
2 + r2

1)
2
. (2)

he intersection of two spherical particles is only possible under
he following constraint which is derived from Eq. (2)

< r1 + r2. (3)

In a porous electrode several combinations of the spherical
articles are possible. For the sake of clarity few examples are
onsidered here. In Fig. 2(a) there are 10 spherical particles and
1 intersection volumes, and each intersection leads to different
olume losses depending on d. If the value of d entering in Eq.
1) is the average value for the porous media, then for the case
hown in Fig. 2(a), the total volume loss is 11 × Vl; where Vl
s the average volume loss. For the case in Fig. 2(b), there are
ight particles and eight intersection volumes. However, some
ntersection volumes are overlapped by the adjacent intersection,
n this case the total volume loss Vtl is expresses as

tl = Np(1 − ψ)Vl, (4)

here ψ is the fractional overlap and Np is the number of par-
icles. When ψ = 0, there is no overlap, and the case becomes
ig. 2. Two possible combinations of spherical particles in a composite elec-
rode.
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be 90% of the particle radius and a coordination number (Zi−e)
of 7.2 is used. From the order of magnitude the results are in
good agreement with the experimental evaluation of vLtpb by
Wilson et al. [7].
70 V.M. Janardhanan et al. / Journal

s in the case of a three sphere intersection with two intersection
olumes. However, for a homogenized porous media we con-
ider the case given by Eq. (4). Let Vt be the total volume of the
lectrode under consideration, then

1 − φ)Vt = Np1
4

3
πr3

1 +Np2
4

3
πr3

2 − (Np1 +Np2)(1 − ψ)Vl,

(6)

here φ is the gas-phase porosity, Np1 the number of particles
ith radius r1, andNp2 is the number of particles with radius r2.

f M is defined as the ratio between the number of particles

= Np2

Np1
= φ2

φ1

r3
1

r3
2

, (7)

here φ1 and φ2 are the volume fraction of particles with radii
1 and r2, respectively. ThenNp1 can be calculated from Eq. (6)
s

p1 = (1 − φ)Vt

(4/3)π(r3
1 +Mr3

2) − (1 − ψ)(1 +M)Vl
. (8)

he total number of particles Np is then given by

p = Np1 +Np2 = (1 − φ)Vt(1 +M)

(4/3)π(r3
1 +Mr3

2) − (1 − ψ)(1 +M)Vl

(9)

he length of boundary due to the intersection of two spheres is
iven by the circumference of a circle. This becomes a “three-
hase” boundary length only if the intersecting particles are of
ifferent phases and the intersection is associated with a pore
pace. Therefore, the average TPB length of a composite elec-
rode is give by

tpb = NpZi−eφ2πa, (10)

here Zi−e is the co-ordination number between the ionic and
lectronic conductors. That is the number of ionic particles sur-
ounding a given electronic particle. According to Bouvard and
ange [11] the coordination number of electronic conductor Ze

n a mixture of ionic and electronic conductors is given by

e = 3 + Z − 3

φe + φiα2 , (11)

nd that of the ionic conductor is given by

i = 3 + (Z − 3)α2

φe + φiα2 . (12)

ere Z is the average coordination number, φi the volume frac-
ion of the ionic particles,φe the volume fraction of the electronic
articles, and α is the mean radius ratio of ionic to electronic
onducting particles, i.e.
= ri

re
. (13)

From simple statistics the average coordination number
etween these two kinds of particle; i.e. the number of ionic

F
g
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articles surrounding an electronic particles and vice versa can
e written as

i−e = Ze−i = φiφeZiZe. (14)

he total TPB length per unit volume or the volume-specific
PB vLtpb length is then given by

Ltpb = φ(1 − φ)(1 +M)Zi−e2πa

(4/3)π(r3
1 +Mr3

2) − (1 − ψ)(1 +M)Vl
(15)

In the case of mono-sized particles with equal volume distri-
ution of ionic and electronic phases the total number of particles
s given by

p = Np1 +Np2 = (1 − φ)Vt

(4/3)πr3 − (1 − ψ)Vl
(16)

he volume-specific TPB length (vLtpb) is then given by

Ltpb = φ(1 − φ)Zi−e2πa

(4/3)πr3 − (1 − ψ)Vl
(17)

. Results and discussion

.1. Uniform particle size distribution

The following results are presented for mono sized particles
or both ionic as well as for electronic phases. Quite obviously
q. (17) predicts maximum volume specific TPB length (vLtpb)
t 50% porosity while other parameters are fixed. Fig. 3 displays
he influence of grain size on vLtpb as a function of gas-phase
orosity φ for equal volume distribution of ionic and electronic
articles. As predicted by Eq. (17), maximum vLtpb is observed
t 50% porosity for all the grain sizes considered and the vLtpb
ncreases with decreasing grain size. For the results presented in
ig. 3, the average distance between the particles is assumed to
ig. 3. Volumetric TPB length as a function of gas-phase porosity for various
rain sizes for mono-sized particles with equal volume distribution (cf. Eq. (17)).
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Fig. 6. Volumetric TPB length as a function of coordination number for a grain
size of 2.5 �m.

phase. The particle size of the electronic phase is kept con-
ig. 4. Volumetric TPB length as a function of grain size for various porosities.

Fig. 4 displays the vLtpb for various porosities as a function
f grain size. For these calculations the distance between the
articles is kept at 90% of the particle radius. Like in the previ-
us case maximum vLtpb is for smaller grains and increase with
ncreasing porosity. However, it should be noticed that, increas-
ng the porosity above 50% will bring down the vLtpb, as it is
bvious from Eq. (17).

The influence of the average distance between the particles
n vLtpb is shown in Fig. 5. For the calculations, the grain size
s kept constant at 2.5 �m. As the distance between the particle
ncreases the vLtpb decreases. Quite obviously when the distance
etween the particle increases the radius of the plane formed by
he intersection of the two spheres decreases, which leads to
horter length for the curve and hence shorter vLtpb. As evident
rom Eq. (17). the vLtpb increases linearly with coordination
umber, which is shown in Fig. 6. Fig. 7 displays the influence
f over fraction ψ on vLtpb. As expected the vLtpb is high for
ow over fractions.
.2. Non-uniform particle size distribution

Fig. 8 depicts the vLtpb against the volume fraction of the
onic phase (φi) for various particle diameters for the ionic

ig. 5. Volumetric TPB length as a function of the distance between the particle
enters for various porosities.
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Fig. 7. Volumetric TPB length as a function of over fraction.
tant at 3.0 �m, and an average coordination number (Z) of 6
s assumed. Generally, the vLtpb increases with decreasing par-
icle diameter. However, the porosity for the maximum vLtpb

ig. 8. Volumetric TPB length as a function of the volume fraction of ionic
onductor for various grain sizes of the ionic conductor.
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Fig. 9. Total solid phase volume as a function of the volume fraction of ionic
conductor for various grain sizes of the ionic conductor.
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ig. 10. TPB length as a function of the volume fraction of ionic conductor for
arious grain sizes of the ionic conductor.

s different for different volume fractions. It may be interesting
o note that the vLtpb is higher for higher grain size at lower
olumetric composition of ionic phase. This is mainly because
t lower ion conductor volume fractions, the total volume of the
olid phase is lower with higher grain size, while the three phase
rea is nearly the same. The total solid phase volume of higher
rain size is lower because of the higher volume loss (Vl). The
otal solid phase volume as a function of volumetric composi-
ion is displayed in Fig. 9, and the three-phase area is shown in
ig. 10.

Fig. 11 displays the vLtpb for two different cases, a case where
he particle size of the ionic phase is larger than that of the elec-
ronic phase, and a case where the particle size of the electronic

hase is larger than that of the ionic phase. When the electronic
hase particle diameter is smaller compared to the ionic phase,
he maximum in vLtpb occurs at lower volume fraction of the
onic phase. And, when the electronic phase particle diameter

[

[

ig. 11. Influence of size of ionic and electronic conductor on volumetric TPB
ength.

s larger compared to the ionic phase, the maximum in vLtpb
ccurs at higher volume fraction of the ionic phase.

. Conclusions

We have developed a mathematical model for volume-
pecific TPB length vLtpb based simple geometrical concepts.
he model takes into account of the micro-structural properties
orosity, particle diameters, and volume fractions of ionic and
lectronic phase. The geometrical model gives result which are
n reasonable agreement with experimental evaluation of vLtpb
7]. The model presented can be used for the calculation of vol-
me specific TPB length for uniform particle size distribution
s well as for non-uniform particle size distribution.
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