Three-phase boundary length in solid-oxide fuel cells: A mathematical model

Vinod M. Janardhanan ${ }^{\text {a }}$, Vincent Heuveline ${ }^{\text {b }}$, Olaf Deutschmann ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe, Germany
${ }^{\mathrm{b}}$ Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe, Germany

Received 9 August 2007; received in revised form 21 November 2007; accepted 24 November 2007
Available online 4 December 2007

Abstract

A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. © 2007 Elsevier B.V. All rights reserved.

Keywords: Three-phase boundary; Solid-oxide fuel cell; Composite electrodes; Electrode microstructure

1. Introduction

Three-phase boundary (TPB) is a geometrical parameter that is of crucial importance for the performance of solid-oxide fuel cells (SOFC) [1]. In general a high TPB is required for high electrochemical performance. Even though there are number of publications concerning the modeling of SOFCs, most of these models lump the TPB length in the exchange current density parameter, which makes the modeling task much easier [2-5]. Nevertheless, it is important to understand the influence of electrode micro-structure on the TPB length. Deng et al. [6] reported a mathematical model to calculate the TPB length for monosized particles. Their expression leads to a TPB length with units of $\mathrm{m} / \mathrm{m}^{4}$. It is quite difficult to conceptualize a physical quantity with the above mentioned units. Furthermore, their model do not account for the coordination number between the ionic and electronic conductors. In most cases of a composite electrode, one is interested in the volume-specific TPB length.

In an interesting article Wilson et al. [7] reported the threedimensional reconstruction of a SOFC anode using ion-beam scanning electron microscopy to determine the micro-structural properties. They estimated the volume-specific TPB length for

[^0]their sample to be $4.28 \times 10^{12} \mathrm{~m} / \mathrm{m}^{3}$. Brown et al. [8] reported that Ni constituted the fraction of larger particles with the particle sizes raging $0.5-3.0 \mu \mathrm{~m}$, while YSZ phase particle size distribution were $0.5-1.0 \mu \mathrm{~m}$. So it is also important to consider the volume specific TPB length for cases with two different mono-sized particle distributions. Schnieder et al. [9] reported the discrete modeling of composite electrode and developed an analytical model for calculating the TPB length. They reported that the maximum TPB length is obtained when the volume fraction of ionic conducting particles is 50%. They also developed an analytical model for calculating the TPB length, which, however, predicts non-zero coordination number, even when the ionic phase volume fraction is zero. Similar to the anode, the three-phase boundary length in cathode is important for the electrochemical reduction of oxygen. Chan et al. [10] reported an analytical expression for the calculation of TPB length. In this work we present the development of a mathematical model to describe the volume-specific TPB length per unit electrode volume from a geometrical perspective.

2. Model development

The model presented here is developed by considering a geometric volume of a composite electrode characterized by its porosity ϕ and particle radii r_{1} and r_{2}. It is assumed that the ionic and electronic solid phases are made up of spherical particles.

Nomenclature

$a \quad$ radius of lens (m)
d distance between the sphere centers (m)
$L_{\mathrm{tpb}} \quad$ average TPB length (m)
$M \quad$ ratio of the number of ionic and electronic particles
$N_{\mathrm{p}} \quad$ total number of particles
$N_{\mathrm{p} 1} \quad$ number of particles with radii r_{1}
$N_{\mathrm{p} 2} \quad$ number of particles with radii r_{2}
r radius (m)
$v L_{\mathrm{tpb}} \quad$ volume specific TPB length $\left(\mathrm{m} / \mathrm{m}^{3}\right)$
$V_{1} \quad$ volume loss $\left(\mathrm{m}^{3}\right)$
$V_{\mathrm{t}} \quad$ total volume $\left(\mathrm{m}^{3}\right)$
$V_{\mathrm{tl}} \quad$ total volume loss $\left(\mathrm{m}^{3}\right)$
$Z \quad$ average coordination number
$Z_{\mathrm{e}} \quad$ coordination number of electronic conductor
$Z_{i} \quad$ coordination number of ionic conductor
$Z_{\mathrm{i}-\mathrm{e}} \quad$ coordination number between ionic and electronic conductor

Greek letters

$\alpha \quad$ mean radius ratio
$\phi \quad$ gas-phase porosity
$\phi_{\mathrm{e}} \quad$ volume fraction of electronic phase
$\phi_{\mathrm{i}} \quad$ volume fraction of ionic phase
$\psi \quad$ fractional overlap

Subscripts

e electronic
i ionic

We start the model development by considering the intersection of two spherical particles as shown in Fig. 1. The volume of the three-dimensional lens common to both the spheres as a result of intersection is given by
$V_{1}=\frac{\pi\left(r_{1}+r_{2}-d\right)^{2}\left(d^{2}+2 d r_{2}-3 r_{2}^{2}+2 d r_{1}+6 r_{2} r_{1}-3 r_{1}^{2}\right)}{12 d}$.

Fig. 1. Intersection of two spherical particles.

Here r_{1} is the radius of the larger sphere, r_{2} that of the smaller one, and d is the distance between the centers of two spheres. (In the analysis presented here we assume the electronic conductors are larger than the ionic conductors [8].) Further, the intersection of the spheres is a curve lying in the plane parallel to the $x-y$ plane, whose radius a is given by
$a=\frac{1}{2 d} \sqrt{4 d^{2} r_{1}^{2}-\left(d^{2}-r_{2}^{2}+r_{1}^{2}\right)^{2}}$.
The intersection of two spherical particles is only possible under the following constraint which is derived from Eq. (2)
$d<r_{1}+r_{2}$.
In a porous electrode several combinations of the spherical particles are possible. For the sake of clarity few examples are considered here. In Fig. 2(a) there are 10 spherical particles and 11 intersection volumes, and each intersection leads to different volume losses depending on d. If the value of d entering in Eq. (1) is the average value for the porous media, then for the case shown in Fig. 2(a), the total volume loss is $11 \times V_{1}$; where V_{1} is the average volume loss. For the case in Fig. 2(b), there are eight particles and eight intersection volumes. However, some intersection volumes are overlapped by the adjacent intersection, in this case the total volume loss V_{tl} is expresses as
$V_{\mathrm{tl}}=N_{\mathrm{p}}(1-\psi) V_{1}$,
where ψ is the fractional overlap and N_{p} is the number of particles. When $\psi=0$, there is no overlap, and the case becomes similar to that discussed in Fig. 2(a). There may also be cases where
$V_{\mathrm{tl}}=\left(N_{\mathrm{p}}-1\right)(1-\psi) V_{1}$,
(a)

(b)

Fig. 2. Two possible combinations of spherical particles in a composite electrode.
as in the case of a three sphere intersection with two intersection volumes. However, for a homogenized porous media we consider the case given by Eq. (4). Let V_{t} be the total volume of the electrode under consideration, then

$$
\begin{equation*}
(1-\phi) V_{\mathrm{t}}=N_{\mathrm{p} 1} \frac{4}{3} \pi r_{1}^{3}+N_{\mathrm{p} 2} \frac{4}{3} \pi r_{2}^{3}-\left(N_{\mathrm{p} 1}+N_{\mathrm{p} 2}\right)(1-\psi) V_{1} \tag{6}
\end{equation*}
$$

where ϕ is the gas-phase porosity, $N_{\mathrm{p} 1}$ the number of particles with radius r_{1}, and $N_{\mathrm{p} 2}$ is the number of particles with radius r_{2}. If M is defined as the ratio between the number of particles
$M=\frac{N_{\mathrm{p} 2}}{N_{\mathrm{p} 1}}=\frac{\phi_{2}}{\phi_{1}} \frac{r_{1}^{3}}{r_{2}^{3}}$,
where ϕ_{1} and ϕ_{2} are the volume fraction of particles with radii r_{1} and r_{2}, respectively. Then $N_{\mathrm{p} 1}$ can be calculated from Eq. (6) as
$N_{\mathrm{p} 1}=\frac{(1-\phi) V_{\mathrm{t}}}{(4 / 3) \pi\left(r_{1}^{3}+M r_{2}^{3}\right)-(1-\psi)(1+M) V_{1}}$.
The total number of particles N_{p} is then given by
$N_{\mathrm{p}}=N_{\mathrm{p} 1}+N_{\mathrm{p} 2}=\frac{(1-\phi) V_{\mathrm{t}}(1+M)}{(4 / 3) \pi\left(r_{1}^{3}+M r_{2}^{3}\right)-(1-\psi)(1+M) V_{1}}$

The length of boundary due to the intersection of two spheres is given by the circumference of a circle. This becomes a "threephase" boundary length only if the intersecting particles are of different phases and the intersection is associated with a pore space. Therefore, the average TPB length of a composite electrode is give by
$L_{\mathrm{tpb}}=N_{\mathrm{p}} Z_{\mathrm{i}-\mathrm{e}} \phi 2 \pi a$,
where $Z_{\mathrm{i}-\mathrm{e}}$ is the co-ordination number between the ionic and electronic conductors. That is the number of ionic particles surrounding a given electronic particle. According to Bouvard and Lange [11] the coordination number of electronic conductor Z_{e} in a mixture of ionic and electronic conductors is given by
$Z_{\mathrm{e}}=3+\frac{Z-3}{\phi_{\mathrm{e}}+\phi_{\mathrm{i}} \alpha^{2}}$,
and that of the ionic conductor is given by
$Z_{\mathrm{i}}=3+\frac{(Z-3) \alpha^{2}}{\phi_{\mathrm{e}}+\phi_{\mathrm{i}} \alpha^{2}}$.
Here Z is the average coordination number, ϕ_{i} the volume fraction of the ionic particles, ϕ_{e} the volume fraction of the electronic particles, and α is the mean radius ratio of ionic to electronic conducting particles, i.e.
$\alpha=\frac{r_{\mathrm{i}}}{r_{\mathrm{e}}}$.
From simple statistics the average coordination number between these two kinds of particle; i.e. the number of ionic
particles surrounding an electronic particles and vice versa can be written as
$Z_{\mathrm{i}-\mathrm{e}}=Z_{\mathrm{e}-\mathrm{i}}=\phi_{\mathrm{i}} \phi_{\mathrm{e}} Z_{\mathrm{i}} Z_{\mathrm{e}}$.
The total TPB length per unit volume or the volume-specific $\mathrm{TPB} v L_{\mathrm{tpb}}$ length is then given by
$v L_{\mathrm{tpb}}=\frac{\phi(1-\phi)(1+M) Z_{\mathrm{i}-\mathrm{e}} 2 \pi a}{(4 / 3) \pi\left(r_{1}^{3}+M r_{2}^{3}\right)-(1-\psi)(1+M) V_{1}}$
In the case of mono-sized particles with equal volume distribution of ionic and electronic phases the total number of particles is given by
$N_{\mathrm{p}}=N_{\mathrm{p} 1}+N_{\mathrm{p} 2}=\frac{(1-\phi) V_{\mathrm{t}}}{(4 / 3) \pi r^{3}-(1-\psi) V_{1}}$
The volume-specific TPB length ($v L_{\mathrm{tpb}}$) is then given by
$v L_{\mathrm{tpb}}=\frac{\phi(1-\phi) Z_{\mathrm{i}-\mathrm{e}} 2 \pi a}{(4 / 3) \pi r^{3}-(1-\psi) V_{1}}$

3. Results and discussion

3.1. Uniform particle size distribution

The following results are presented for mono sized particles for both ionic as well as for electronic phases. Quite obviously Eq. (17) predicts maximum volume specific TPB length ($v L_{\mathrm{tpb}}$) at 50% porosity while other parameters are fixed. Fig. 3 displays the influence of grain size on $v L_{\mathrm{tpb}}$ as a function of gas-phase porosity ϕ for equal volume distribution of ionic and electronic particles. As predicted by Eq. (17), maximum $v L_{\text {tpb }}$ is observed at 50% porosity for all the grain sizes considered and the $v L_{\mathrm{tpb}}$ increases with decreasing grain size. For the results presented in Fig. 3, the average distance between the particles is assumed to be 90% of the particle radius and a coordination number $\left(Z_{i-e}\right)$ of 7.2 is used. From the order of magnitude the results are in good agreement with the experimental evaluation of $v L_{\mathrm{tpb}}$ by Wilson et al. [7].

Fig. 3. Volumetric TPB length as a function of gas-phase porosity for various grain sizes for mono-sized particles with equal volume distribution (cf. Eq. (17)).

Fig. 4. Volumetric TPB length as a function of grain size for various porosities.
Fig. 4 displays the $v L_{\mathrm{tpb}}$ for various porosities as a function of grain size. For these calculations the distance between the particles is kept at 90% of the particle radius. Like in the previous case maximum $v L_{\mathrm{tpb}}$ is for smaller grains and increase with increasing porosity. However, it should be noticed that, increasing the porosity above 50% will bring down the $v L_{\mathrm{tpb}}$, as it is obvious from Eq. (17).

The influence of the average distance between the particles on $v L_{\mathrm{tpb}}$ is shown in Fig. 5. For the calculations, the grain size is kept constant at $2.5 \mu \mathrm{~m}$. As the distance between the particle increases the $v L_{\mathrm{tpb}}$ decreases. Quite obviously when the distance between the particle increases the radius of the plane formed by the intersection of the two spheres decreases, which leads to shorter length for the curve and hence shorter $v L_{\mathrm{tpb}}$. As evident from Eq. (17). the $v L_{\mathrm{tpb}}$ increases linearly with coordination number, which is shown in Fig. 6. Fig. 7 displays the influence of over fraction ψ on $v L_{\mathrm{tpb}}$. As expected the $v L_{\mathrm{tpb}}$ is high for low over fractions.

3.2. Non-uniform particle size distribution

Fig. 8 depicts the $v L_{\text {tpb }}$ against the volume fraction of the ionic phase $\left(\phi_{\mathrm{i}}\right)$ for various particle diameters for the ionic

Fig. 5. Volumetric TPB length as a function of the distance between the particle centers for various porosities.

Fig. 6. Volumetric TPB length as a function of coordination number for a grain size of $2.5 \mu \mathrm{~m}$.

Fig. 7. Volumetric TPB length as a function of over fraction.
phase. The particle size of the electronic phase is kept constant at $3.0 \mu \mathrm{~m}$, and an average coordination number (Z) of 6 is assumed. Generally, the $v L_{\mathrm{tpb}}$ increases with decreasing particle diameter. However, the porosity for the maximum $v L_{\mathrm{tpb}}$

Fig. 8. Volumetric TPB length as a function of the volume fraction of ionic conductor for various grain sizes of the ionic conductor.

Fig. 9. Total solid phase volume as a function of the volume fraction of ionic conductor for various grain sizes of the ionic conductor.

Fig. 10. TPB length as a function of the volume fraction of ionic conductor for various grain sizes of the ionic conductor.
is different for different volume fractions. It may be interesting to note that the $v L_{\mathrm{tpb}}$ is higher for higher grain size at lower volumetric composition of ionic phase. This is mainly because at lower ion conductor volume fractions, the total volume of the solid phase is lower with higher grain size, while the three phase area is nearly the same. The total solid phase volume of higher grain size is lower because of the higher volume loss $\left(V_{1}\right)$. The total solid phase volume as a function of volumetric composition is displayed in Fig. 9, and the three-phase area is shown in Fig. 10.

Fig. 11 displays the $v L_{\mathrm{tpb}}$ for two different cases, a case where the particle size of the ionic phase is larger than that of the electronic phase, and a case where the particle size of the electronic phase is larger than that of the ionic phase. When the electronic phase particle diameter is smaller compared to the ionic phase, the maximum in $v L_{\mathrm{tpb}}$ occurs at lower volume fraction of the ionic phase. And, when the electronic phase particle diameter

Fig. 11. Influence of size of ionic and electronic conductor on volumetric TPB length.
is larger compared to the ionic phase, the maximum in $v L_{\mathrm{tpb}}$ occurs at higher volume fraction of the ionic phase.

4. Conclusions

We have developed a mathematical model for volumespecific TPB length $v L_{\mathrm{tpb}}$ based simple geometrical concepts. The model takes into account of the micro-structural properties porosity, particle diameters, and volume fractions of ionic and electronic phase. The geometrical model gives result which are in reasonable agreement with experimental evaluation of $v L_{\mathrm{tpb}}$ [7]. The model presented can be used for the calculation of volume specific TPB length for uniform particle size distribution as well as for non-uniform particle size distribution.

References

[1] J.W. Kim, A.V. Virkar, K.Z. Fung, K. Mehta, S.C. Singhal, J. Electrochem. Soc. 146 (1999) 69-78.
[2] H. Zhu, R.J. Kee, V.M. Janardhanan, O. Deutschmann, D.G. Goodwin, J. Electrochem. Soc. 152 (2005) A2427-A2440.
[3] V.M. Janardhanan, O. Deutschmann, J. Power Sources 162 (2006) 1192-1202.
[4] V.M. Janardhanan, O. Deutschmann, Zeitschrift f. Phys. Chem. 221 (2007) 443-478.
[5] S. Chan, K. Khor, Z. Xia, J. Power Sources 93 (2000) 130-140.
[6] X. Deng, A. Petric, J. Power Sources 140 (2005) 297-303.
[7] J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, S.A. Barnett, Nat. Mater. 5 (2006) 541-544.
[8] M. Brown, S. Primdahl, M. Mogensen, J. Electrochem. Soc. 147 (2000) 475-485.
[9] L. Schneider, C. Martin, Y. Bultel, D. Bouvard, E. Siebert, Electrochim. Acta 52 (2006) 314-324
[10] S.H. Chan, X.J. Chen, K.A. Khor, J. Electrochem. Soc. 151 (2004) A164-A172.
[11] D. Bouvard, F.F. Lange, Acta Metall. Mater. 39 (1991) 3083-3090.

[^0]: * Corresponding author. Tel.: +49 721608 3138; fax: +49 7216084805.

 E-mail address: deutschmann@ict.uni-karlsruhe.de (O. Deutschmann).

